
5: Setup Hooks
Last Modified on 02/01/2021 4:20 pm EST

1
Info

2
Properties

3
Authentication

4
Config & Parameters

5
Hooks

6
Events

7
Resources

Hooks enable you to execute custom JavaScript before an API request (pre-request hook) and after the API provider
sends a response (post-response hook). You can use two types of hooks when you create a connector: global hooks and
resource hooks. Global hooks happen on every request or response, while resource hooks happen only on requests to and
responses from specific endpoints.

Use hooks to manipulate any part of a request or response or to operate on a configuration. You might need a hook due to
the authentication expected by the endpoint. You might need to send a value to an endpoint, but it requires a different
data type than what SAP Cloud Platform Open Connectors supports. You might also need to manipulate headers to
extract an ID to include in a response. See Examples for more use cases.

Definitions
global hookglobal hook
A hook that applies to all requests or responses configured for a connector.
resource hookresource hook
A hook that applies to requests or responses configured for a specific endpoint.
pre-request hookpre-request hook
A script that executes prior to sending API requests. For example, use a pre-request hook to manipulate or add query
parameters, headers, the path, the body, or any connector configuration.
post-response hookpost-response hook
A script that executes after recieving a response from an API provider. For example, use a post-response hook to
manipulate response headers, the body, or any connector configuration based on the response.

Add Hooks

You can create pre-request and post-response hooks as part of the whole connector configuration, in events, and for
individual resources.

To add global hooks: on the Setup page open the Hooks section, click the Add hookAdd hook button for the type of hook, and
then write the script.
To add resource hooks: add or edit a resource. In the Hooks section of the endpoint, click the Add hookAdd hook button for
the type of hook, and then write the script.
To add event hooks: configure events, click Add an event hookAdd an event hook, and then write the script.

JavaScript for Hooks

Use JavaScript to write your global or resource hooks. The function signature for all JS when building connectors looks like:

/**
* @param {Object} request_body The incoming request HTTP body
* @param {Object} request_body_map The incoming request HTTP body, converte
d to a MAP for easy script access
* @param {Object} request_headers The incoming request headers for this AP
I call
* @param {Object} request_path The incoming request path for this API c
all
* @param {Object} request_parameters The incoming query parameters for this A
PI request
* @param {Object} request_vendor_parameters The incoming vendor query parameters for
this API request
* @param {Object} request_method The request HTTP method
* @param {Object} request_vendor_method The request vendor HTTP method
* @param {Object} request_vendor_path The request path
* @param {Object} request_vendor_headers The request vendor HTTP headers
* @param {Object} request_vendor_body The request vendor HTTP body
* @param {Object} request_vendor_body_map The request vendor HTTP body, converted
to a MAP for easy script access
* @param {Object} request_vendor_url The request vendor URL
* @param {Object} request_expression The OCNQL where parameter of the resourc
e, converted to List of Map containing "value, operator, attribute\" to construct the search oper
ation the endpoint needs
* @param {Object} request_previous_response If the endpoint is part of a response ch
ain, a previous request response value. This value can be used to construct the final response fr
om chained API calls.
* @param {Object} request_previous_response_headers If the endpoint is part of a response ch
ain, a previous request response header. This value can be used to construct the final response f
rom chained API calls.
* @param {Object} meta_data Metadata about the object
* @param {Object} configuration The Connector's configuration object
* @param {Object} vendor_object_name This will be the same as object_name unl
ess a vendor object name has been set on the object already. Represented as a string
* @param {Function} metadata_merge Applicable for the endpoint /objects/{ob
jectName}/metadata. If set to true when vendors support metadata and post hook returns CE format
of vendor metadata, it merges the vendor’s metadata with CE model metadata.
* @param {Function} done The callback function that you will nee
d to call at the end of your JS
*/
function(request_body, request_body_map, request_headers, request_path, request_parameters, reque
st_vendor_parameters, request_method, request_vendor_method, request_vendor_path, request_vendor_
headers, request_vendor_body, request_vendor_body_map, request_vendor_url, request_expression, re
quest_previous_response, request_previous_response_headers, meta_data, configuration, metadata_me
rge, done) {
// your JavaScript goes here
}

Note the following when writing Javascript in formulas:

For all scripts, JavaScript strict mode is enforced.
You can use console.log to log data to the JavaScript console to help debug your formula.
You can use notify.email to send an email notification.
ES6 is supported; see Mozilla's documentation for additional information.
The function parameters are immutable, meaning they cannot be assigned to directly. To change an object or value
passed into the function, first copy it to your own local variable and then make the necessary changes.
Body variables (request_body) are applicable only to methods that pass a JSON body like POST, PATCH, and PUT.
Body variables are undefined/null if there is no JSON body sent.

Note: when adding a \n (new line) character to a string, the Javascript editor in Connector Builder will parse the
character and add a new line. In order to add a new line character, you must escape the \n by adding an additional slash.

For example, the \n character would be entered as \\n .

The done Function

The done function is a callback function that should be called to end the function. It can pass a continue object,
indicating that the API request should continue to be processed and any new objects that should overwrite the existing
incoming objects to this function. An example might be:

done({
 "continue": true,
 "request_vendor_parameters": new_request_vendor_parameters
});

Send false as the continue value in a pre-hook, to stop the execution at this point and returns the response. If the
request has a postHook, then it will execute that before returning. This can be used to further customize a response.

In the above example, the request_vendor_parameters that are returned will overwrite the request vendor
parameters that need to be sent to the endpoint.

Libraries
CE: Our custom library that provides some common functionality. You do not need to require this library
because it is available by default.

CE.randomString() : Generate a random string (approx. 10 characters long).
CE.randomEmail() : Generate a random email address.
CE.md5(str) : Create an MD5 hash from a string value. Takes a string as a parameter. Returns a
string .
CE.b64(str) : Encode a string in base64. Takes a string as a parameter. Returns a string .
CE.decode64(str) : Decode a string from base64, using UTF-8 encoding. Takes a string as a

parameter. Returns a string .
CE.hmac(algo)(enc)(secret, str) : HMAC hash a string (str) using the provided secret (secret),

algorithm (algo), and encoding (enc). See https://nodejs.org/api/crypto.html#crypto_class_hmac for more
information about the algorithm and encoding parameters.
CE.hmac[algo][enc](secret, str) : This is a set of convenience functions that allow HMAC hashing

using some common algorithms and encodings. For example, CE.hmacSha1Hex(secret, str) will create
an HMAC SHA1 hash of the provided string, using the provided secret, and return a hex string. You can replace
algo and enc with the following values: algo: Sha1 , Sha256 , Md5 enc: Hex , base64

Lodash: The popular lodash library. To use this library, simply require it in your script. It is possible to use the
library modules, as well, such as lodash/fp .
Util: The standard Node util library. To use, require it in your script.

Examples

This section presents some possible use cases for hooks. Because you can write JavaScript, the possibilities available are
limited only to your needs and imagination.

Global Pre-Request Hook for All Delete Methods
Pre-Request Hook Using Connector Configuration
Post-Response Hook Reading Response Headers
Reading Event Webhooks
Removing Headers

HTTP and HTTPS Library Examples

Global Pre-Request Hook for All Delete Methods

The hook below applies to all delete method requests. If the request is delete , then override or create object with that
key.

if(request_vendor_method === 'DELETE') {
 request_vendor_headers["Content-Type"] = "*/*";
 done({
 "request_vendor_headers": request_vendor_headers
 });
}

Pre-Request Hook Using Connector Configuration

This hook is an example of reading a value from the configuration of your connector, then manipulating the data that has
been posted to an endpoint.

var body = JSON.parse(request_vendor_body);
var contactEmailUpsert = configuration["contact.emailupsert"];
if(contactEmailUpsert === false) {
 done();
}
//Updating the body field contact object with upsert=true
body["contact"] = {
 "upsert": true
};

//Converting the object to string and returning
done({
 "request_vendor_body": JSON.stringify(body),
 "continue": true
});

Post-Response Hook Reading Response Headers

This hook is an example of reading the response headers to retrieve a value, then extracting that value as an ID and
sending it as a response.

The script only executes if the response behaves as expected.

if(response_headers === null
 || !(response_status_code === 201
 || response_status_code === 200)) {
 done();
}

//Get the location string from headers
var location = response_headers["location"];
if(location === null) {
 done();
}
//Extract just the id part from the location string
location = location.replace("https://someurl/v1/contacts/","")
location = location.replace(".json","");

//Construct the response body
var response = {
 "id": location
};

//return the response body
done({
 "response_body": response
});

Reading Event Webhooks

This hook is an example of reading the event webhook types and formatting them into what SAP Cloud Platform Open
Connectors expects.

var formattedEvents = getArray();
var eventObj = {};
eventObj.event_date = events["modifiedAt"];
eventObj.event_object_id = events["id"];

var webhook_types = events.eventHeaders["x-event"];

if(webhook_types === 'convo.created') {
 eventObj.event_type = 'CREATED';
 eventObj.event_object_type = 'incidents';
} else if(webhook_types === 'convo.updated') {
 eventObj.event_type = 'UPDATED';
 eventObj.event_object_type = 'incidents';
} else if(webhook_types === "convo.deleted"){
 eventObj.event_type = 'DELETED';
 eventObj.event_object_type = 'incidents';
} else if(webhook_types === 'customer.created'){
 eventObj.event_type = 'CREATED';
 eventObj.event_object_type = 'users';
} else if(webhook_types === 'customer.updated'){
 eventObj.event_type = 'UPDATED';
 eventObj.event_object_type = 'users';
}

formattedEvents.add(eventObj);
done({
 "events" : formattedEvents
});

Note that when the value is not a valid EventType, the eventObj.event_type field is set by default to UNKNOWN .

Removing Headers

By default, we send Accept: "application/json" and Content-Type: "application/json" in the headers. If
the service provider cannot handle Accept or Content-Type headers, you can remove them from the request.

In this example, we remove the Content-Type header.

let headers = {
 "Content-Type": null
};

done({
 "request_vendor_headers": headers
...
)};

HTTP and HTTPS Library Examples

Use the HTTP and HTTPs libraries to make requests from a hook to any HTTP or HTTPS endpoint.

const https = require('https');
//Get SFDC connector from CE and return the results
https.get('https://api.openconnectors.us2.ext.hana.ondemand.com/elements/api-v2/elements/sfdc', (
res) => {
 console.log('after response');
 let rawData = '';
 res.on('data', (chunk) => rawData += chunk);
 res.on('end', () => {
 try {
 let parsedData = JSON.parse(rawData);
 done({ "response_body": parsedData });
 } catch (e) {
 console.log(e.message);
 done({ "response_error": e.message});
 }
 });
});

Example using http:

const http = require('http');

//Call Swagger petstore
let options = {
 hostname: 'petstore.swagger.io',
 path: '/v2/store/inventory',
 headers: {
 'Accept': 'application/json'
 }
};

const apiCall = http.request(options);
apiCall.on('response', res => {
 console.log('after response');
 let rawData = '';
 res.on('data', (chunk) => rawData += chunk);
 res.on('end', () => {
 try {
 let parsedData = JSON.parse(rawData);
 console.log('Parsed response');
 done({ "response_body": parsedData });
 } catch (e) {
 done({ "response_error": e.message});
 }
 });
 });

apiCall.on('error', err => {
 done({ "response_error": err.message});
});

apiCall.end();

