
PostgreSQL Authenticate
a Connector
Last Modified on 12/30/2019 9:22 pm EST

Create Instance Directly via IP Address and Port Number

The following is required to create a PostgreSQL connector Instance:

Database Host: e.g. 123.123.1.123:3306
Database Name

Database Username

Database Password

Database Schema Name (OPTIONAL:OPTIONAL: Schema name from where the database schema

needs to be read from, if nothing mentioned connects to public schema)

Database Tables (OPTIONAL:OPTIONAL: Can connect a set of tables i.e. contacts, accounts or

prefixed tables, i.e. data_* via comma separated list)

Step 1. Create an Instance

To provision your PostgreSQL connector, use the /instances API.

Below is an example of the provisioning API call.

HTTP HeadersHTTP Headers: Authorization- User , Organization

HTTP VerbHTTP Verb: POST

Request URLRequest URL: /instances

Request BodyRequest Body: Required – see below

Query ParametersQuery Parameters: none

Description: token is returned upon successful execution of this API. This token needs to be

retained by the application for all subsequent requests involving this connector instance.

A sample request illustrating the /instances API is shown below.

HTTP Headers:

Authorization: User , Organization

This instance.json file must be included with your instance request. Please fill your information

to provision. The “key” into PostgreSQL is "postgresql". This will need to be entered in the “key”

field below depending on which connector you wish to instantiate.

Instance Configuration

The content in the configuration section or nested object in the body posted to the

POST /instances or PUT /instances/{id} APIs varies depending on which connector

is being instantiated. However, some configuration properties are common to all connectors

and available to be configured for all connectors. These properties are -

event.notification.enabled : This property is a boolean property, and

determines if event reception (via webhook or polling) is enabled for the

connector instance. This property defaults to false.

event.vendor.type : When event.notification.enabled property is set to

true, this property determines the mechanism to use to receive or fetch changed events

from the service endpoint. The supported values are webhook and polling . Most

connectors support one mechanism or the other, but some like Salesforce.com support

both mechanisms. This property is optional.

event.notification.type : This property can be used to determine how an event

notification should be sent to the consumer of the connector instance, in most cases

your application. Currently, webhook is the only supported value for this property. This

means that when an event is received by the connector instance, it will get forwarded to

the provided event.notification.callback.url via a webhook to you. This

property is optional.

event.notification.callback.url : As mentioned above, the value of this

property is an http or https URL to which we will post the event for consumption

by your application. This property is optional.

filter.response.nulls : This property defaults to true, i.e., it's boolean property,

and determines if null values in the response JSON should or should not be filtered

from the response returned to the consuming application. By default, all null values

are filtered from the response before sending the response to the consuming

application.

