
Ecwid Authenticate a
Connector Instance
Last Modified on 03/30/2020 11:46 pm EDT

On this page

You can authenticate with Ecwid to create your own instance of the Ecwid connector through

the UI or through APIs. Once authenticated, you can use the connector instance to access the

different functionality offered by the Ecwid platform.

Authenticate Through the UI

Use the UI to authenticate with Ecwid and create a connector instance. If you authenticate with

Ecwid via OAuth 2.0, all you need to do is add a name for the instance, whereas authenticating

via custom authorization will require you to input your Ecwid Store ID, Oder API Secret, and

Product API Secret you recorded in API Provider Setup. After you create the instance, you'll log

in to Ecwid to authorize SAP Cloud Platform Open Connectors to access your account. For

more information about authenticating a connector instance, see Authenticate a Connector

Instance (UI).

After successfully authenticating, we give you several options for next steps. Make requests

using the API docs associated with the instance, map the instance to a common resource , or

use it in a formula template.

Authenticate Through API

To provision your Ecwid connector, use the /instances API.

Step 1. Call the /instances API
HTTP HeadersHTTP Headers: Authorization- User , Organization

HTTP VerbHTTP Verb: POST

Request URLRequest URL: /instances

Request BodyRequest Body: Required – see below

Query ParametersQuery Parameters: none

Ecwid now has two types of authentication- Oauth2 or custom.

Oauth2

curl -X GET \
'https://api.openconnectors.us2.ext.hana.ondemand.com/elements/api-v2/eleme
nts/oauth/url?apiKey=&apiSecret=&callbackUrl=' \

Authenticating Users and Receiving the Authorization
Grant Code

1

Redirect URL

2

Authenticate Users

3

Authenticate Instance

Provide the oauthUrl in the response from the previous step to the users. After users

authenticate, provides the following information in the response:

code

state

ResponseResponse

ParameterParameter
DescriptionDescription

The authorization grant code returned from the API provider in an OAuth 2.0

code authentication workflow. SAP Cloud Platform Open Connectors uses the code to

retrieve the OAuth access and refresh tokens from the endpoint.

state A customizable identifier, typically the connector key (``) .

ResponseResponse

ParameterParameter
DescriptionDescription

 Note:Note: If the user denies authentication and/or authorization, there will be a query

string parameter called error instead of the code parameter. In this case,

your application can handle the error gracefully.

Authenticating the Connector Instance

1

Redirect URL

2

Authenticate Users

3

Authenticate Instance

Use the code from the previous step and the /instances endpoint to authenticate with

and create a connector instance. If you are configuring events, see the Events section.

 Note:Note: The endpoint returns a connector instance token and id upon successful

completion. Retain the token and id for all subsequent requests involving this

connector instance.

To authenticate a connector instance:

1. Construct a JSON body as shown below (see Parameters):

{
 "element": {
 "key": ""
 },
 "providerData": {
 "code": ""
 },
 "configuration": {
 "oauth.api.key": "< app >",
 "oauth.api.secret": "< app >",
 "oauth.callback.url": "< app >"
 },
 "tags": [
 ""
],
 "name": ""
}

2. Call the following, including the JSON body you constructed in the previous step:

POST /instances

 Note:Note: Make sure that you include the User and Organization keys in the

header. See the Overview for details.

3. Locate the token and id in the response and save them for all future requests using

the connector instance.

Example Request

curl -X POST \
 https://api.openconnectors.us2.ext.hana.ondemand.com/elements/api-v2/inst
ances \
 -H 'authorization: User , Organization ' \
 -H 'content-type: application/json' \
 -d '{
 "element": {
 "key": ""
 },
 "providerData": {
 "code": "xxxxxxxxxxxxxxxxxxxxxxx"
 },
 "configuration": {
 "oauth.api.key": "Rand0MAP1-key",
 "oauth.api.secret": "fak3AP1-s3Cr3t",
 "oauth.callback.url": "https;//mycoolapp.com",
 },
 "tags": [
 "Docs"
],
 "name": "API Instance"
}'

Custom Authentication

In order to create an Ecwid instance with custom Authentication (note this is a legacy version of

Ecwid so if you do not already have your store ID, order API Key, and Product API Key you

should use oauth2), you will need the Store ID, Order API Key, and Product API Key. For

instructions on how to retrieve those credentials, please see our Ecwid Endpoint Setup. NOTE:

Ecwid currently supports the the GET, PUT/PATCH, DELETE API calls. POST is not available at

this time.

Description: token is returned upon successful execution of this API. This token needs to be

retained by the application for all subsequent requests involving this connector instance.

A sample request illustrating the /instances API is shown below.

HTTP Headers:

Authorization: User , Organization

This instance.json file must be included with your instance request. Please fill your information

to provision. The “key” into SAP Cloud Platform Open Connectors Ecwid is “ecwid”. This will

need to be entered in the “key” field below depending on which Connector you wish to

instantiate.

{
 "element": {
 "key": "ecwid"
 },
 "configuration": {
 "ecwid.order.key": "",
 "ecwid.product.key": "",
 "ecwid.store.id": ""
 },
 "name": ""
}

Here is an example cURL command to create an instance using /instances API.

Example Request:

curl -X POST
-H 'Authorization: User , Organization '
-H 'Content-Type: application/json'
-d @instance.json
'https://api.openconnectors.us2.ext.hana.ondemand.com/elements/api-v2/insta
nces'

If the user does not specify a required config entry, an error will result notifying her of which

entries she is missing.

Below is a successful JSON response:

{
 "id": 12345,
 "name": "test",
 "token": "dsPr6AheLIS8pt7rp8E81bSKEkx9Ftr+9Y",
 "element": {
 "id": 42,
 "name": "Ecwid",
 "key": "ecwid",
 "description": "Ecwid is everything you need to sell anywhere.",
 "image": "elements/provider_ecwid.png",
 "active": true,
 "deleted": false,
 "typeOauth": false,
 "trialAccount": false,
 "configDescription": "If you do not have a Ecwid account, you can creat
e one at Ecwid Signup"
 },
 "provisionInteractions": [],
 "valid": true,
 "disabled": false,
 "maxCacheSize": 0,
 "cacheTimeToLive": 0,
 "cachingEnabled": false
}

Note: Make sure you have straight quotes in your JSON files and cURL commands. Please use

plain text formatting in your code.

Instance Configuration

The content in the configuration section or nested object in the body posted to the

POST /instances or PUT /instances/{id} APIs varies depending on which connector

is being instantiated. However, some configuration properties are common to all connectorss

and available to be configured for all connectors. These properties are -

event.notification.enabled : This property is a boolean property, and

determines if event reception (via webhook or polling) is enabled for the

connector instance. This property defaults to false.

event.vendor.type : When event.notification.enabled property is set to

true, this property determines the mechanism to use to receive or fetch changed events

from the service endpoint. The supported values are webhook and polling . Most

connectors support one mechanism or the other, but some like Salesforce.com support

both mechanisms. This property is optional.

event.notification.type : This property can be used to determine how an event

notification should be sent to the consumer of the connector instance, in most cases

your application. Currently, webhook is the only supported value for this property. This

means that when an event is received by the connector instance, it will get forwarded to

the provided event.notification.callback.url via a webhook to you. This

property is optional.

event.notification.callback.url : As mentioned above, the value of this

property is an http or https URL to which we will post the event for consumption

by your application. This property is optional.

filter.response.nulls : This property defaults to true, i.e., it's boolean property,

and determines if null values in the response JSON should or should not be filtered

from the response returned to the consuming application. By default, all null values

are filtered from the response before sending the response to the consuming

application.

