
Formula Step Types
Last Modified on 06/17/2022 5:12 am EDT

You can choose from several different types of steps to make up your formula. You can refer to any step with the
${steps.stepName} syntax. Because you refer to the step by name, each step name must be unique within each

formula. However, you can reuse a step name in a different formula. You can also add readmes and descriptions to both
entire formulas and their individual steps; see Formula Readmes and Descriptions for additional information.

You can use the following types of steps in your formulas:

ActiveMQ Request
Connector API Request
HTTP Request
JS Filter
JS Script
Loop Over Variable
Platform API Request
Retry Formula on Failure
Stream
Sub-formula

ActiveMQ Request
The ActiveMQ Request (amqpRequest) step type uses the AMQP protocol to post a message to an MQ server such as
RabbitMQ.

{
 "steps":[
 {
 "name":"stepName",
 "onFailure":[

],
 "type":"amqpRequest",
 "properties":{
 "exchange":"MQ server exchange",
 "body":"${steps.transform-event.response}",
 "queue":"queue",
 "url":"amqp://user:pass@host:10000/vhost"
 },
 "onSuccess":[
 "nextStepName"
]
 }
]
}

When you set up an ActiveMQ Request step, include the following information:

http://help.openconnectors.ext.hana.ondemand.com/home/formula-readmes-descriptions
http://help.openconnectors.ext.hana.ondemand.com/#activemq-request
http://help.openconnectors.ext.hana.ondemand.com/#element-api-request
http://help.openconnectors.ext.hana.ondemand.com/#http-request
http://help.openconnectors.ext.hana.ondemand.com/#js-filter
http://help.openconnectors.ext.hana.ondemand.com/#js-script
http://help.openconnectors.ext.hana.ondemand.com/#loop-over-variable
http://help.openconnectors.ext.hana.ondemand.com/#platform-api-request
http://help.openconnectors.ext.hana.ondemand.com/#retry-formula-on-failure
http://help.openconnectors.ext.hana.ondemand.com/#stream-file
http://help.openconnectors.ext.hana.ondemand.com/#sub-formula

ParameterParameter DescriptionDescription RequiredRequired

Name
name

The name of the formula step. The name must be unique within the formula. Y

URL
url

Specifies the AMQP URL endpoint of the MQ Server. The structure of the URL is specified in
RabbitMQ URI Specification.

Y

Queue
queue

Indicates the name of the queue of the MQ server to which the message should be posted. Y

Message
body

The JSON payload to post to the server. Y

Exchange
exchange

The name of the MQ server exchange to which the message should be posted. N

ActiveMQ Request Step Scope
ActiveMQ Request steps add the step execution values described in the example JSON below to the formula context. The
formula context is then passed from step-to-step, allowing you to use these values in any subsequent steps in your
formula.

{
 "myAmqStep": {
 "request": {
 "body": "{\"message\":\"This is a test message.\"}",
 "url": "amqp://otqaqsml:tPpXwTl7-iMtezRmyJmD-y2U_XbroYpW@jaguar.rmq.cloudamqp.com/otqaqsml",
 "exchange": "main",
 "queue": "myqueue"
 }
 }
}

Example references to ActiveMQ Request scope:

${steps.myAmqStep.request}
${steps.myAmqStep.request.body}

Connector API Request
The Connector API Request (elementRequest) step makes an API call to a specific Connector Instance.

https://www.rabbitmq.com/uri-spec.html

 {
 "steps":[
 {
 "name":"stepName",
 "onFailure":[

],
 "type":"elementRequest",
 "properties":{
 "elementInstanceId":"${config.elementVariable
}",
 "method":"POST",
 "api":"/messages",
 "headers":"Header content",
 "query":"query string",
 "path":"path string",
 "body":"Body content",
 "acceptableStatusCodes":"200,201",
 "retry":"true",
 "retryAttempts":"5",
 "retryDelay":"401",
 "retryStatusCodes":"500,501"
 },
 "onSuccess":[
 "nextStepName"
]
 }
]
}

To see an Connector API Request step in action see:

CRM to Messages
Add New Contact Created in One System to Another
Bulk Transfer CRM Data

When you set up an Connector API Request step, include the following information:

ParameterParameter DescriptionDescription RequiredRequired

http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#crm-to-messages
http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#add-new-contact-created-in-one-system-to-another
http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#bulk-transfer-crm-data

Name
name

The name of the formula step. The name must be unique within the formula. Y

Connector Instance
Variable
elementInstanceId

Specifies the connector instance that receives the API call. Y

Method
method

The API method of the API call, such as GET, POST, PUT, PATCH, or DELETE. Y

API
api

The endpoint, such as hubs/crm/contacts . Y

Headers
headers

The headers to pass along as part of the API request. You rarely need to add
anything to the headers, but you can use this parameter to pass common
header information such as content types.

N

Query
query

Specifies the filter query to send with the related request. Construct the query
in another step and refer to it in the query field. For example,
${steps.previousStep.query}

N

Path
path

Support earlier formulas where path defined variables, such as an {ID}
variable in an endpoint. In the latest version, the path parameter is
unnecessary.

N

Body
body

Specifies the JSON body to send with the related request. Construct the JSON
body in another step and refer to it in the body parameter. For example,
${steps.previousStep.body} .

N

Acceptable Codes
acceptableStatusCodes

A comma-separated list (200,201) of codes, range (200-205), or both (
200-205,208) returned in the response that indicates success.

N

Retry on Failure
retry

Indicates that we should retry a configurable number of times if the request
fails.

N

Max Retry Attempts
retryAttempts

The maximum number of times to retry the request. N

Retry Delay
retryDelay

The time in milliseconds to wait between retries. N

Retry Status Codes
retryStatusCodes

A comma-separated list (500,502) of codes, range (400-415), or both (
400-415,500,502) returned in the response that indicates that we should

retry the request.

N

ParameterParameter DescriptionDescription RequiredRequired

Connector API Request Step Scope
Connector API Request steps add the step execution values described in the example JSON below to the formula context.
The formula context is then passed from step-to-step, allowing you to use these values in any subsequent steps in your
formula.

{
 "myElementRequestStep": {
 "request": {
 "query": "{}",
 "body": "{\"Name\":\"New Account Name\"}",
 "method": "POST",
 "path": "{}",
 "uri": "/elements/api-v2/hubs/crm/accounts",
 "headers": "{\"authorization\":\"Element /ABC=, User DEF=, Organization GHI\",\"content-
length\":\"14\",\"host\":\"jjwyse.ngrok.io\",\"content-type\":\"application/json}"
 },
 "response": {
 "code": "200",
 "headers": "{\"Set-Cookie\":
\"CESESSIONID=2CA15552EE56EAF65BF1102F6CACEACC;Path=/elements/;HttpOnly\"}",
 "body": "{\"Id\": \"001tx3WcAAI\", \"Name\": \"New Account Name\"}"
 }
 }
}

Example references to Connector API Request scope:

${steps.myElementRequestStep.request}
${steps.myElementRequestStep.request.body}
${steps.myElementRequestStep.response.code}

HTTP Request
The HTTP Request (httpRequest) step make an HTTP/S call to any URL/endpoint.

{
 "steps":[
 {
 "name":"stepName",

 "onFailure":[

],
 "type":"httpRequest",
 "properties":{
 "method":"POST",
 "url":"https://mycoolapp.com/api",
 "headers":"Header content",
 "query":"query string",
 "path":"path string",
 "body":"Body content",
 "acceptableStatusCodes":"200,201",
 "retry":"true",
 "retryAttempts":"5",
 "retryDelay":"401",
 "retryStatusCodes":"500,501"
 },
 "onSuccess":[
 "nextStepName"
]
 }
]
}

When you set up an HTTP Request step, include the following information:

ParameterParameter DescriptionDescription RequiredRequired

Name
name

The name of the formula step. The name must be unique within the formula. Y

Method
method

The API method of the API call, such as GET, POST, PUT, PATCH, or DELETE. Y

HTTP/S URL
url

The full URL of the request. Y

Headers
headers

The headers to pass along as part of the API request. You rarely need to add
anything to the headers, but you can use this parameter to pass common
header information such as content types.

N

Query
query

Specifies the filter query to send with the related request. Construct the query
in another step and refer to it in the query field. For example,
${steps.previousStep.query}

N

Path
path

Support earlier formulas where path defined variables, such as an {ID}
variable in an endpoint. In the latest version, the path parameter is
unnecessary.

N

Body
body

Specifies the JSON body to send with the related request. Construct the JSON
body in another step and refer to it in the body parameter. For example,
${steps.previousStep.body} .

N

Acceptable Codes
acceptableStatusCodes

A comma-separated list (200,201) of codes, range (200-205), or both (
200-205,208) returned in the response that indicates success.

N

Retry on Failure
retry

Indicates that we should retry a configurable number of times if the request
fails.

N

Max Retry Attempts
retryAttempts

The maximum number of times to retry the request. N

Retry Delay
retryDelay

The time in milliseconds to wait between retries. N

Retry Status Codes
retryStatusCodes

A comma-separated list (500,502) of codes, range (400-415), or both (
400-415,500,502) returned in the response that indicates that we should

retry the request.

N

HTTP Request Step Scope
HTTP Request steps add the step execution values described in the example JSON below to the formula context. The
formula context is then passed from step-to-step, allowing you to use these values in any subsequent steps in your
formula.

{
 "myHTTPRequestStep": {
 "request": {
 "query": "{}",
 "body": "{\"Name\":\"New Account Name\"}",
 "method": "POST",
 "url": "https://api.myservice.com:443/myresource",
 "path": "{}",
 "headers": "{\"authorization\":\"mysessionid\",\"content-type\":\"application/json}"
 },
 "response": {
 "code": "200",
 "headers": "{\"Set-Cookie\":
\"CESESSIONID=2CA15552EE56EAF65BF1102F6CACEACC;Path=/elements/;HttpOnly\"}",
 "body": "{\"id\": \"237648\", \"name\": \"My New Resource Name\"}"
 }
 }
}

Example references to HTTP Request scope:

${steps.myHTTPRequestStep.request}
${steps.myHTTPRequestStep.request.body}
${steps.myHTTPRequestStep.response.code}

JS Filter
Use the JS Filter (true/false) (filter) step to write custom Javascript that must return true or false. As with all steps, you
must include a name. See Javascript in Formulas for more information about working with Javascript in formulas.

{
 "name":"stepName",
 "onFailure":[

],
 "type":"filter",
 "properties":{
 "body":"Javacript, for example: let status = trigger
.args.status;\n\nif (status && status === \"COMPLET
ED\") {\n done(true);\n} else {\n done(false);\n}"
 },
 "onSuccess":[
 "nextStepName"
]
}

Use JS Filter steps to specify only certain event types, field values, or other information. You can also use filters to split
formulas into different paths.

If a filter returns true , the formula executes the left, or OnSuccess, step.

http://help.openconnectors.ext.hana.ondemand.com/home/javascript-in-formulas

If a filter returns false , the formula executes the tight, or OnFailure, step.

To see a JS Filter step in action see:

Retrieve, Transform, and Sync Contact
Bulk Transfer CRM Data

JS Filter Step Scope
JS Filter steps pass a boolean into the JS done callback function. That boolean is made available under the key titled
continue , as shown in the examples below.

{
 "myFilterStep": {
 "continue": "true"
 }
}

{
 "myFilterStep": {
 "continue": "false"
 }
}

JS Script
Use the JS Script (script) step to write custom Javascript that must pass a valid JSON object to the done callback. As
with all steps, you must include a name. See Javascript in Formulas for more information about working with Javascript in
formulas.

http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#add-new-contact-created-in-one-system-to-another
http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#bulk-transfer-crm-data
http://help.openconnectors.ext.hana.ondemand.com/home/javascript-in-formulas

{
 "steps":[
 {
 "name":"stepName",
 "onFailure":[

],
 "type":"script",
 "properties":{
 "body":"Javacript, for example: done({\n \"subj
ect\": \"CRM Event Occurred\",\n \"to\": \"recipient@
gmail.com\",\n \"from\": \"sender@cloud-elements.c
om\",\n \"message\": `${trigger.event.objectType}
with ID ${trigger.event.objectId} was ${trigger.even
t.eventType}`\n});"
 },
 "onSuccess":[
 "nextStepName"
]
 }
]
}

 Use JS Script steps to build objects to use in request steps for query parameters or the request body.

 Note:Note: If you use console.log in a JS Script step, the output is added to the body of the step. If you
reference the script step in another step as just ${steps.stepName} , the console.log output is added to
the step context and can cause errors. Prevent this by declaring what to include in the step body by adding it
to done . For example, done({body.variableName}) .

To see a JS Script step in action see:

CRM to Messages
Bulk Transfer CRM Data

http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#crm-to-messages
http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#bulk-transfer-crm-data

JS Script Step Scope
JS Script steps add whatever object is passed to the JS done callback to the formula context. The formula context is
then passed from step-to-step, allowing you to use these values in any subsequent steps in your formula.

done({
 foo: 'bar',
 object: {
 someKey: 'someValue'
 }
});

Example references to JS Script scope:

${steps.myScriptStep.foo}
${steps.myScriptStep.object}
${steps.myScriptStep.object.someKey}

Loop Over Variable
Use the Loop Over Variable (loop) step to loop over a list of objects from a previous step or trigger. Set onSuccess to
the first step in the loop. When you have reached the last step in the loop set the onSuccess field to the loop step, this will
restart the loop for the next object. If you need to continue on after the loop is completed, set onFailure to the next step
to execute after the loop is completed. For a loop step, onFailure is executed when the loop has been executed for all
objects in the list.

{
 "steps":[
 {
 "name":"stepName",
 "onFailure":[

],
 "type":"loop",
 "properties":{
 "list":"$ {steps.steps1.body}"
 },
 "onSuccess":[
 "nextStepName"
]
 }
]
}

When you set up a Loop Over Variable step, include the following information:

ParameterParameter DescriptionDescription RequiredRequired

Name
name

The name of the formula step. The name must be unique within the formula. Y

List
list

A reference to a previous step that provides a list of items to loop through. Y

ParameterParameter DescriptionDescription RequiredRequired

Loop Over Variable Step Scope
Loop Over Variable steps make available the current object being processed and the index to each step executed inside of
that loop. For example, if we have a loop step named looper , any steps that are run inside of that loop would have
access to looper.index and looper.entry .

Example references to Loop scope:

${steps.myLoopStep.entry.id}
${steps.myLoopStep.index}

Platform API Request
The Platform API Request (request) step makes an API call to one of our platform APIs.

{
 "steps":[
 {
 "name":"stepName",
 "onFailure":[

],
 "type":"request",
 "properties":{
 "elementInstanceId":"${config.elementVariable
}",
 "method":"POST",
 "api":"/instances",
 "headers":"Header content",
 "query":"query string",
 "path":"path string",
 "body":"Body content",
 "acceptableStatusCodes":"200,201",
 "retry":"true",
 "retryAttempts":"5",
 "retryDelay":"401",
 "retryStatusCodes":"500,501"
 },
 "onSuccess":[
 "nextStepName"
]
 }
]
}

 When you set up a Platform API Request step, include the following information:

ParameterParameter DescriptionDescription RequiredRequired

Name
name

The name of the formula step. The name must be unique within the formula. Y

Connector Instance
Variable
elementInstanceId

Specifies the connector instance that receives the API call. Y

Method
method

The API method of the API call, such as GET, POST, PUT, PATCH, or DELETE. Y

API
api

The endpoint, such as hubs/crm/contacts . Y

Headers
headers

The headers to pass along as part of the API request. You rarely need to add
anything to the headers, but you can use this parameter to pass common
header information such as content types.

N

Query
query

Specifies the filter query to send with the related request. Construct the query
in another step and refer to it in the query field. For example,
${steps.previousStep.query}

N

Path
path

Support earlier formulas where path defined variables, such as an {ID}
variable in an endpoint. In the latest version, the path parameter is
unnecessary.

N

Body
body

Specifies the JSON body to send with the related request. Construct the JSON
body in another step and refer to it in the body parameter. For example,
${steps.previousStep.body} .

N

Acceptable Codes
acceptableStatusCodes

A comma-separated list (200,201) of codes, range (200-205), or both (
200-205,208) returned in the response that indicates success.

N

Retry on Failure
retry

Indicates that we should retry a configurable number of times if the request
fails.

N

Max Retry Attempts
retryAttempts

The maximum number of times to retry the request. N

Retry Delay
retryDelay

The time in milliseconds to wait between retries. N

Retry Status Codes
retryStatusCodes

A comma-separated list (500,502) of codes, range (400-415), or both (
400-415,500,502) returned in the response that indicates that we should

retry the request.

N

Platform API Request Step Scope

Platform API Request steps add the step execution values described in the example JSON below to the formula context.
The formula context is then passed from step-to-step, allowing you to use these values in any subsequent steps in your
formula.

{
 "myPlatformStep": {
 "request": {
 "query": "{}",
 "body": "{\"Name\":\"New Account Name\"}",
 "method": "POST",
 "path": "{}",
 "uri": "/elements/api-v2/hubs/crm/accounts",
 "headers": "{\"authorization\":\"Element /ABC=, User DEF=, Organization GHI\",\"content-
length\":\"14\",\"host\":\"jjwyse.ngrok.io\",\"content-type\":\"application/json}"
 },
 "response": {
 "code": "200",
 "headers": "{\"Set-Cookie\":
\"CESESSIONID=2CA15552EE56EAF65BF1102F6CACEACC;Path=/elements/;HttpOnly\"}",
 "body": "{\"Id\": \"001tx3WcAAI\", \"Name\": \"New Account Name\"}"
 }
 }
}

Example references to Platform API Request scope:

${steps.myPlatformStep.request}
${steps.myPlatformStep.request.body}
${steps.myPlatformStep.response.code}

Retry Formula on Failure
Retry Formula on Failure (retryFormulaExecution) retries a formula instance execution with the same input data. You
can configure the number of retry attempts with a maximum of 4 attempts.

When you set up a Retry Formula on Failure step, include the following information:

ParameterParameter DescriptionDescription RequiredRequired

Name
name

Y

Max Retry Attempts
retryAttempts

The maximum number of times to retry the request. N

Retry Formula on Failure Step Scope
Retry Formula on Failure steps truncate the formula execution and schedule a retry execution for a later time based upon
the retry attempt number. The result of this equation is used to schedule a retry in minutes. The step execution response
value for this step is a string as shown in the example below.

{
 "id": "53067",
 "key": "retry.error",
 "value": "formula instance execution scheduled for retry at approximately 2016-12-05T08:52:37-07:00"
}

In this example, the step name in the formula is retry , and the value of the step execution indicates the time when the
formula execution will be retried.

Stream File
Stream File (elementRequestStream) steps move a file from one Connector Instance to another. Stream Files steps
configure two API requests instead of just one. One request downloads the date from a connector instance, and the
second request uploads the data to another. Use the response body of the download request as the request body of the
upload request.

{
 "steps": [
 {
 "name": "stepName",
 "onFailure": [],
 "type": "elementRequestStream",
 "properties": {
 "uploadElementInstanceId": "${config.uploadEle
mentVariable}",
 "uploadMethod": "POST",
 "downloadQuery": "Query string",
 "uploadQuery": "Query string",
 "uploadApi": "/bulk/${config.objectname}",
 "uploadHeaders": "${steps.previousStep.upload
Headers}",
 "uploadFormData": "${steps.previousStep.form
Data}",
 "downloadMethod": "GET",
 "downloadElementInstanceId": "${config.downl
oadElementVariable}",
 "downloadHeaders": "${steps.previousStep.dow
nloadHeaders}",
 "uploadFormDataName": "${steps.previousStep
.formParameter}",
 "downloadApi":
"/bulk/${trigger.args.id}/${config.objectname}"
 },
 "onSuccess": [
 "nextStepName"
]
 }
]
}

To see a Stream File step in action see Bulk Transfer CRM Data.

When you set up a Stream File step, include the following information:

ParameterParameter DescriptionDescription RequiredRequired

Name
name

The name of the formula step. The name must be unique within the
formula.

Y

Download/Upload Connector
Instance Variable
uploadElementInstanceId /
downloadElementInstanceId

Specifies the connector instance that receives the API call. Y

Download/Upload Method
uploadMethod /
downloadMethod

The API method of the API call, such as GET, POST, PUT, PATCH, or
DELETE.

Y

Download/Upload API
uploadApi / downloadApi

The endpoint, such as hubs/crm/contacts . Y

http://help.openconnectors.ext.hana.ondemand.com/home/formula-template-examples#bulk-transfer-crm-data

Download/UploadHeaders
uploadHeaders /
downloadHeaders

The headers to pass along as part of the API request. You rarely need to
add anything to the headers, but you can use this parameter to pass
common header information such as content types.

N

Download/UploadQuery
uploadQuery /
downloadQuery

Any query parameters, such as a OCNQL query or pagination, to pass as
part of the API request.

N

Upload Form Data
uploadFormData

Specifies the form data to send with the related request. Construct the
form data in another step and refer to it in the Upload Form Data
parameter. For example, ${steps.previousStep.formdata} .

N

Upload Form Parameter Name
uploadFormDataName

Specifies the name of the form parameter. N

ParameterParameter DescriptionDescription RequiredRequired

Stream File Step Scope
Stream File steps add the step execution values described in the example JSON below to the formula context. The formula
context is then passed from step-to-step, allowing you to use these values in any subsequent steps in your formula.

{
 "myStreamStep": {
 "download": {
 "request": {
 "query": "{}",
 "method": "POST",
 "uri": "/elements/api-v2/hubs/crm/accounts",
 "headers": "{\"authorization\":\"Element /ABC=, User DEF=, Organization GHI\",\"content-length\":\"14\",\"h
ost\":\"jjwyse.ngrok.io\",\"content-type\":\"application/json}"
 },
 "response": {
 "code": "200",
 "headers": "{\"Set-Cookie\":
\"CESESSIONID=2CA15552EE56EAF65BF1102F6CACEACC;Path=/elements/;HttpOnly\"}"
 }
 },
 "upload": {
 "request": {
 "query": "{}",
 "method": "POST",
 "uri": "/elements/api-v2/hubs/crm/accounts",
 "headers": "{\"authorization\":\"Element /ABC=, User DEF=, Organization GHI\",\"content-length\":\"14\",\"h
ost\":\"jjwyse.ngrok.io\",\"content-type\":\"application/json}"
 },
 "response": {
 "code": "200",
 "headers": "{\"Set-Cookie\":
\"CESESSIONID=2CA15552EE56EAF65BF1102F6CACEACC;Path=/elements/;HttpOnly\"}",
 "body": "{\"Id\": \"001tx3WcAAI\", \"Name\": \"New Account Name\"}"
 }
 }
 }
}

Example references to Stream File scope:

${steps.myStreamStep.download.request.query}
${steps.myStreamStep.upload.request.headers}
${steps.myStreamStep.upload.response.body}

Sub-Formula
Sub-formula (formula) steps run another formula instance.

{
 "steps": [
 {
 "name": "stepName",
 "onFailure": [],
 "type": "formula",
 "properties": {
 "formulaId": "11448"
 },
 "onSuccess": [
 "nextStepName"
]
 }
]
}

When you set up a Sub-Formula step, include the following information:

ParameterParameter DescriptionDescription RequiredRequired

Name
name

The name of the formula step. The name must be unique within the formula. Y

Sub-Formula (ID)
formulaId

The ID of the formula. Y

args Any values that should be made available to the sub formula. N

subFormulaConfigs Any variables required for the sub formula. N

Sub-Formula Step Scope
Sub-formula steps add the values produced as the result of the last step in the sub-formula. Therefore, we recommend
that when you build formulas to be used by other other formulas that you add a specific step to aggregate and returns
whatever data is needed in the parent's formula context.

If the sub-formula requires variables, then those variables can either be set in the parent formula instance using the same
config names or passed in via the subFormulaConfigs property. All sub-formulas inherit their parent formula's
configuration values. If you pass in the subFormulaConfigs these are added to the list of existing configs from the
parent and the sub-formula has access to the parent's configs and those passed in with the values in
subFormulaConfigs taking precedence.

The args can be accessed in the sub-formula using trigger.args . The subFormulaConfigs can be accessed in the

sub-formula using config for example: ${config.crmInstanceId} .

