
Formula Template
Examples
Last Modified on 04/28/2020 2:50 pm EDT

On this page

The examples in this section show a selection of common use cases for Formulas. Each example

includes a table that identifies the types of triggers, steps, and variables used in the formula. The

table also identifies any prerequisites required, like a connector with events. Lastly, each example

includes a downloadable JSON file that you can use to create your own version of the example

template with the POST /formulas endpoint.

CRM to Messages

This example listens for an event on a CRM connector and then sends an email with that event

information using a messaging connector. This example was tested with the Salesforce Sales

Cloud and SendGrid connectors.

TriggerTrigger Step TypesStep Types
VariableVariable
TypesTypes PrerequisitesPrerequisites

TemplateTemplate
JSONJSON

Event JS Script
Connector
API Request

Connector
Instance

CRM hub connector instance
with events
Messaging hub authenticated
connector instance

Formula
JSON

To create a formula that listens for an event and emails a message:

1. Build a formula template and select EventEvent as the trigger.

2. Because the trigger is a change to a CRM connector, add a connector instance variable that

refers to a CRM connector.

1. Click .

2. Click Add New VariableAdd New Variable, and then click Connector InstanceConnector Instance.

3. Enter a name for your CRM variable. In this example, we'll use crmElement .

4. Click SaveSave.

5. Select the variable that you just created (crmElement), and then click SaveSave on the

Edit event: "trigger" page.

Your formula visualization should look like the following example:

3. Add another connector instance variable for the messaging connector.

1. Click VariablesVariables.

2. Click Connector InstanceConnector Instance.

3. Enter a name. For this tutorial we'll call it messagingElement .

4. Click SaveSave.

4. In the formula visualization, click to add a step.

5. Create a JS Script step that constructs a message when the trigger happens.

1. Click JS ScriptJS Script.

2. Enter a name for the script. We'll call it constructBody .

3. Enter a script that constructs a message, such as the example below.

 done({
 "subject": "CRM Event Occurred",
 "to": "receipient@cloud-elements.com",
 "from": "sender@cloud-elements.com",
 "message": `${trigger.event.objectType} with ID ${trigger.event.
objectId} was ${trigger.event.eventType}`
});

4. Click SaveSave.

6. Create a Connector API Request step to send the message that you created in the

previous step. Click the constructBodyconstructBody step, and then click Add OnSuccessAdd OnSuccess.

1. Select Connector API RequestConnector API Request.

2. Enter a name for the step. We'll call it sendEmail .

3. In Connector Instance VariableConnector Instance Variable, click , and then select the messagingElementmessagingElement

variable that we created earlier.

4. In MethodMethod, select POSTPOST because the formula will submit a POST request to the

messaging hub to send an email.

5. In APIAPI, enter the API used to send email messages. In this case, enter /messages .

6. Click Show AdvancedShow Advanced.

7. Scroll to BodyBody and enter the reference to the email that we constructed earlier. In this

case, type ${steps.constructBody} .

8. Click SaveSave.

Your formula should look like the visualization below. It should include a trigger and two steps: the

first constructs an email and the second sends a message.

Add New Contact Created in One System to Another

This example listens for a new contact on one connector instance, and then adds the new contact

to another connector instance. The trigger for the formula is an Event. When a new contact is

created at a connector instance that has events set up, the trigger receives a payload with the

raw contact information. Because this raw data cannot be used to create the same contact at a

different connector instance, the formula uses the objectID from the trigger to get the

transformed contact instead. The formula then posts the transformed contact to the target

connector instance.

For this example to work, you must define a common resource to transform the data received

from Salesforce.

This example was tested with the Salesforce Sales Cloud and HubSpot CRM connectors.

TriggerTrigger Step TypesStep Types
VariableVariable
TypesTypes PrerequisitesPrerequisites

TemplateTemplate
JSONJSON

Event JS Filter Connector CRM hub authenticated Formula

Connector
API
Request

Instance connector instance with events
CRM hub authenticated
connector instance to sync new
contact to
A common resource that
transforms contacts
A common resource mapped to
the origin and destination
connector instances

JSON

TriggerTrigger Step TypesStep Types
VariableVariable
TypesTypes PrerequisitesPrerequisites

TemplateTemplate
JSONJSON

To create a formula that adds new contacts created in one system to another:

1. Build a formula template and select EventEvent as the trigger.

2. Because the trigger originates from a connector instance configured to listen for events,

add a connector instance variable.

1. Click .

2. Click Add New VariableAdd New Variable, and then click Connector InstanceConnector Instance.

3. Enter a name for your CRM variable. In this example, we'll use originInstance .

4. Click SaveSave.

5. Select the variable that you just created (originInstance), and then click SaveSave.

Your formula visualization should look like the following example:

3. Add another Connector Instance variable to represent the system to update after you

create a contact at the originInstance .

1. Click VariablesVariables.

2. Click Connector InstanceConnector Instance.

3. Enter a name. For this tutorial we'll call it destinationInstance .

4. Click SaveSave.

4. In the formula visualization, click to add a step.

5. Create a JS Filter step that checks to be sure the event is a created contact, and not an

updated or deleted contact.

1. Click JS Filter (true/false)JS Filter (true/false).

2. Enter a name for the script. We'll call it isCreateContact .

3. Enter a script that checks to be sure the event was caused by a created object, such

as the example below.

6.
 let theEvent = trigger.event.eventType;
 let theObject = trigger.event.objectType;

 done((theEvent === 'CREATED') && (theObject === 'Contact' || theObjec
t === 'contacts'));

7. Create a Connector API Request step to retrieve the transformed version of the newly

created object based on the objectId in the trigger. Click the isCreateContactisCreateContact step, and

then click Add OnSuccessAdd OnSuccess.

 Note:Note: This step uses the objectId from the trigger to retrieve the

transformed object. If you just retrieved the information about the object from

the event payload in the trigger, it would not be transformed and could not sync

with another connector.

1. Select Connector API RequestConnector API Request.

2. Enter a name. For this tutorial we'll call it retrieveOriginalContact .

3. In Connector Instance VariableConnector Instance Variable, click , and then select the originInstanceoriginInstance variable

that we created earlier.

4. In MethodMethod, select GETGET because the formula will submit a GET request to a common

resource.

5. In APIAPI, retrieve the transformed newly created contact by entering the endpoint of

the common resource and specifying the objectId from the trigger. For this

tutorial, the common resource is called myContacts .

/MyContacts/${trigger.event.objectId}

6. Click SaveSave.

8. Create a Connector API Request step to add the contact to another connector instance.

Click the retrieveOriginalContactretrieveOriginalContact step, and then click Add OnSuccessAdd OnSuccess.

1. Select Connector API RequestConnector API Request.

2. Enter a name. For this tutorial we'll call it createContact .

3. In Connector Instance VariableConnector Instance Variable, click , and then select the destinationInstancedestinationInstance

variable that we created earlier.

4. In MethodMethod, select POSTPOST because the formula will submit a POST request to sync the

contact.

5. In APIAPI, enter the API to the common resource. For this tutorial, the common resource

is called myContacts .

/MyContacts

6. Click Show AdvancedShow Advanced.

7. Scroll to BodyBody and enter the reference to the step with the transformed contact data.

In this case, type ${steps.retrieveOriginalContact.response.body} . This

inserts the body from the retrieveOriginalContact step—the JSON

describing the transformed contact—in the POST request to the

destinationInstance .

8. Click SaveSave.

Your formula is finished and should look like the visualization below. It should include a trigger and

three steps: the first checks that an event is a created contact, the second gets the transformed

contact data, and the third syncs the contact.

Bulk Transfer CRM Data

Bulk data transfer is a common use case. For example, your first sync between CRM systems or

maybe you add many accounts or contacts each day and want a single job to run to sync between

systems. This example demonstrates how to use two Formulas to complete a bulk transfer.

TriggerTrigger Step TypesStep Types Variable TypesVariable Types PrerequisitesPrerequisites
TemplateTemplate
JSONJSON

Scheduled
(Formula
1)
Manual
(Formula
2)

JS Script
Connector
API
Request
JS Filter
(Formula
2)
Stream
File
(Formula
2)

Value
Connector
Instance

CRM hub
authenticated
connector
instance with
events
CRM hub
authenticated
connector
instance to
sync new
contact to

Step 1
Formula
JSON
Step 2
Formula
JSON

Formula 1

To create a formula that makes a bulk query and then triggers the second formula that will

download and then upload the bulk files:

1. Build a formula template and select ScheduledScheduled as the trigger.

2. Add a cron string to identify when the sync occurs.

This example fires every Monday through Friday at 1:00 a.m..

0 0 1 ? * MON,TUE,WED,THU,FRI *

3. Add three variables for the 1) The resource that you want to sync (like account or

contact), 2) The connector instance that includes the resources that you want to sync

and, 3) The formula instance id associated with the second formula (Formula 2) in this

process.

1. Click VariablesVariables.

2. Click ValueValue.

3. Enter a name for the variable that represents the resource that you want to sync. For

this tutorial we'll call it resourceName .

4. Click SaveSave.

5. Repeat to create a Value variable called stepTwoId .

6. Create a Connector Instance variable named originInstance .

4. In the formula visualization, click to add a step.

5. Create a JS Script step that builds the metadata for the bulk query, including the OCNQL

query that requests a specific resource and the callback URL that will be the formula

execution endpoint that executes Formula 2.

1. Click JS ScriptJS Script.

2. Enter a name for the script. We'll call it buildMetaData .

6.
 done ({
 "query":{
 "q":"select * from " + config.resourceName
 },
 "headers":{
 "Elements-Async-Callback-Url":"/formulas/instances/" + config.s
tepTwoId + "/executions"
 }
 });

7. Create a Connector API Request step to make a bulk download query, referencing the

query and callback URL created in buildMetaDatabuildMetaData. Click the buildMetaDatabuildMetaData step, and the

click Add OnSuccessAdd OnSuccess.

1. Select Connector API RequestConnector API Request.

2. Enter a name. For this tutorial we'll call it bulkQuery .

3. In Connector Instance VariableConnector Instance Variable, click , and then select the originInstanceoriginInstance variable

that we created earlier.

4. In MethodMethod, select POSTPOST because the formula will submit a POST request to the

resource.

5. In APIAPI, enter the endpoint to make a bulk query.

/bulk/query

6. Click Show AdvancedShow Advanced.

7. In HeadersHeaders, enter the reference to the headers that you built in the script in the

buildMetaData step. In this case, type ${steps.buildMetaData.headers} .

8. In QueryQuery, enter the reference to the query that you built in the script in the

buildMetaData step. In this case, type ${steps.buildMetaData.query} .

9. Click SaveSave.

The first formula should look like the visualization below. It should include a trigger and two steps:

the first builds the metadata for a bulk query, and the second makes the bulk query, which

includes a callback to the formula execution endpoint of the next formula.

Formula 2

To create a formula that receives the notification that the job completes, downloads the file from

the original connector, and posts to the destination:

1. Build a formula template and select ManualManual as the trigger, and then click SaveSave.

 Note:Note: You do not need to configure anything for the manual trigger, but take

note of the endpoint that you will need to trigger the formula:
POST
/formulas/instances/:id/executions

2. Add two connector instance variables to represent the connector that you are downloading

from and the connector that you are uploading to, and a variable to represent the resource

that you are syncing.

1. Click VariablesVariables.

2. Click ValueValue.

3. Enter a name for the variable that represents the resource that you want to sync. For

this tutorial we'll call it resourceName .

4. Click SaveSave.

5. Create Connector Instance variables to represent the source and target systems to

sync. For this example, use originInstance and destinationInstance .

3. In the formula visualization, click to add a step.

4. Create a JS Filter step that makes sure that the bulk query is completed.

1. Click JS Filter (true/false)JS Filter (true/false).

2. Enter a name for the script. We'll call it isSuccessful .

3. Enter a script such as the example below.

5.
 let status = trigger.args.status;

 if (status && status === "COMPLETED") {
 done(true);
 } else {
 done(false);
 }

6. Create a JS Script step that defines an identifier field, which is the unique key for an upsert

operation. It also specifies the content type as csvcsv. Click the isSuccessfulisSuccessful step, and then

click Add OnSuccessAdd OnSuccess .

1. Click JS ScriptJS Script.

2. Enter a name for the script. We'll call it buildMetaData .

3. Enter a script like the following example:

7.
 const metaData = {
 "identifierFieldName":"email"
 }

 const downloadHeaders = {
 "Accept":"text/csv"
 };

 done({
 "metaData": metaData,
 "downloadHeaders": downloadHeaders
 });

8. Create a Connector Stream step to move the files downloaded from the origin instance to

the destination instance. Click the buildMetaDatabuildMetaData step, and then click Add OnSuccessAdd OnSuccess .

1. Select Stream FileStream File.

2. Enter a name. For this example we'll call it bulkStream .

3. In Download Connector Instance VariableDownload Connector Instance Variable, click , and then select the

originInstanceoriginInstance variable that we created earlier.

4. In Download MethodDownload Method, enter GET .

5. In Download APIDownload API, enter

/bulk/${trigger.args.id}/${config.resourceName} .

${trigger.args.id} gets the id from the payload sent to the trigger by Formula

1. ${config.resourceName} refers to the resourceName variable that identifies

the resource that you want to sync.

6. In Upload Connector Instance VariableUpload Connector Instance Variable, click , and then select the

destinationInstancedestinationInstance variable that we created earlier.

7. In Upload MethodUpload Method, enter POST .

8. In Upload APIUpload API, enter /bulk/${config.resourceName} .

${trigger.args.id} .

9. Click Show AdvancedShow Advanced.

10. In Download HeadersDownload Headers, enter the reference to the download headers that you built in

the script in the buildMetaData step. In this case, type

${steps.buildMetaData.downloadHeaders} .

11. In Upload QueryUpload Query, enter the reference to the upload query that you built in the script in

the buildMetaData step. In this case, type

${steps.buildMetaData.metaData} .

12. Click SaveSave.

The second formula should look like the visualization below.

