5: Setup Hooks

Last Modified on 02/01/2021 4:20 pm EST

Hooks

Hooks enable you to execute custom JavaScript before an APl request (pre-request hook) and after the API provider
sends a response (post-response hook). You can use two types of hooks when you create a connector: global hooks and
resource hooks. Global hooks happen on every request or response, while resource hooks happen only on requests to and
responses from specific endpoints.

Use hooks to manipulate any part of a request or response or to operate on a configuration. You might need a hook due to
the authentication expected by the endpoint. You might need to send a value to an endpoint, but it requires a different
data type than what SAP Cloud Platform Open Connectors supports. You might also need to manipulate headers to
extractan ID to include in a response. See Examples for more use cases.

Definitions

global hook

A hook that applies to all requests or responses configured for a connector.

resource hook

A hook that applies to requests or responses configured for a specific endpoint.

pre-request hook

A script that executes prior to sending API requests. For example, use a pre-request hook to manipulate or add query
parameters, headers, the path, the body, or any connector configuration.

post-response hook

A script that executes after recieving a response from an APl provider. For example, use a post-response hook to

manipulate response headers, the body, or any connector configuration based on the response.

Add Hooks

You can create pre-request and post-response hooks as part of the whole connector configuration, in events, and for
individual resources.

e To add global hooks: on the Setup page open the Hooks section, click the Add hook button for the type of hook, and
then write the script.

e To add resource hooks:add or edit a resource. In the Hooks section of the endpoint, click the Add hook button for
the type of hook, and then write the script.

e Toaddevent hooks:configure events, click Add an event hook, and then write the script.

JavaScript for Hooks

Use JavaScript to write your global or resource hooks. The function signature for all JS when building connectors looks like:

funct (request body, request body map, request headers, request path, request parameters, reque

st _vendor parameters, request method, request vendor method, request vendor path, request vendor

headers, request vendor body, request vendor body map, request vendor url, request exp: ion, re
t previous response, request previous res 1se_headers, meta data, configuration, met

rge, done) {

Note the following when writing Javascript in formulas:

For all scripts, JavaScript strict modeis enforced.

You canuse c« le.log tolog datatothe JavaScript console to help debug your formula.

Youcanuse notify.email tosendanemail notification.

ES6 is supported; see Mozilla's documentation for additional information.

The function parameters are immutable, meaning they cannot be assigned to directly. To change an object or value
passed into the function, first copy it to your own local variable and then make the necessary changes.

Body variables (request_body) are applicable only to methods that pass a JSON body like POST, PATCH, and PUT.
Body variables are undefined/null if there is no JSON body sent.

Note: whenaddinga \n (new line) character to a string, the Javascript editor in Connector Builder will parse the

character and add a new line. In order to add a new line character, you must escape the \n by adding an additional slash.

For example,the \n character would be enteredas \\n .

The done Function

The done functionis a callback function that should be called to end the function. ltcanpassa continue object,
indicating that the API request should continue to be processed and any new objects that should overwrite the existing
incoming objects to this function. An example might be:

new request vendor parameters

Send false asthe continue valueina pre-hook,to stop the execution at this point and returns the response. If the
request has a postHook, then it will execute that before returning. This can be used to further customize a response.

Inthe above example, the request vendor parameters thatare returned will overwrite the request vendor

parameters that need to be sent to the endpoint.

Libraries

e CE: Our custom library that provides some common functionality. You do notneedto require thislibrary
because it is available by default.

o CE.randomString () :Generatearandom string (approx.10 characters long).

0 CE.randomEmail () :Generate arandom email address.

o CE.md5 (str) :CreateanMD5 hash from astring value. Takesa string asaparameter. Returnsa

string .

o CE.b64(str) :Encodeastringinbase64. Takesa string asaparameter.Returnsa string .

o CE.decode64 (str) :Decode astring from base64, using UTF-8 encoding. Takesa string asa
parameter. Returnsa string .

o CE.hmac (algo) (enc) (secret, str) :HMAC hash astring (str) using the provided secret (secref),
algorithm (algo), and encoding (enc). See https://nodejs.org/api/crypto.html#crypto_class_hmac for more
information about the algorithm and encoding parameters.

o CE.hmac[algo] [enc] (secret, str) :Thisisasetofconvenience functions thatallow HMAC hashing
using some common algorithms and encodings. For example, CE.hmacShalHex (secret, str) willcreate
an HMAC SHA1 hash of the provided string, using the provided secret, and return a hex string. You can replace
algo and enc with the following values: algo: shal , Sha256 , Md5 enc. Hex , base64

e |odash: The popular lodash library. To use thislibrary, simply require itinyour script.Itis possible to use the
library modules, as well, suchas 1lodash/fp .
e Util: The standard Node util library. Touse, require itinyourscript.

Examples

This section presents some possible use cases for hooks. Because you can write JavaScript, the possibilities available are
limited only to your needs and imagination.

o Global Pre-Request Hook for All Delete Methods
e Pre-Request Hook Using Connector Configuration
e Post-Response Hook Reading Response Headers
e Reading Event Webhooks

e Removing Headers

e HTTPand HTTPS Library Examples

Global Pre-Request Hook for All Delete Methods

The hook below applies to all delete method requests. If the requestis delete ,then override or create object with that

key.

Pre-Request Hook Using Connector Configuration

This hook is an example of reading a value from the configuration of your connector, then manipulating the data that has
been posted to an endpoint.

act.emailupsert"];

Post-Response Hook Reading Response Headers

This hook is an example of reading the response headers to retrieve a value, then extracting that value as an ID and
sending it as a response.

The script only executes if the response behaves as expected.

if (response
! (response_status code ===

|| response status code === 200))

var location = LosponsoihcadorsL”iﬁca;;cn”,;
if (location === null) ({

done () ;

ocation = location.replace ("https://someurl/vl/contacts/","")

location.replace(".]

done ({

)

Reading Event Webhooks

This hook is an example of reading the event webhook types and formatting them into what SAP Cloud Platform Open
Connectors expects.

var formattedEvents etArray () ;
var eventObj = {};
eventObj.event date cvents["modifiedAt"];
ntObj.event object ic events(["id"];
vebhook types = events.eventHeaders|["x-event"];
>bhook types === 'c
eventObj.event type
eventObj nt objec
convo.update
PDATED';
eventObj.e |
if (webhook
eventObj.eve
eventObj.event
if (webhook types customer.c
eventObj.event type 'CREATED';
eventObj.event object
if (webhook types
eventObj.event type

eventObj.event object type

formattedEvents.add (eventObj) ;
done ({
"events" : formattedEvents

);

Note that when the value is not a valid EventType, the eventObj.event type fieldissetby defaultto UNKNOWN .

Removing Headers

By default, we send Accept: "application/json" and Content-Type: "application/json" inthe headers.If

the service provider cannot handle Accept or Content-Type headers,youcanremove them from the request.

In this example, we remove the Content-Type header.

HTTP and HTTPS Library Examples

Use the HTTP and HTTPs libraries to make requests from a hook to any HTTP or HTTPS endpoint.

return

Example using http:

