Slack Authenticate a
Connector

Last Modified on 03/16/2020 10:07 pm EDT

You can authenticate with Slack to create your own instance of the Slack connector through
the Ul or through APIs. Once authenticated, you can use the connector instance to access the
different functionality offered by the Slack platform.

Authenticate Through the Ul

Use the Ul to authenticate with Slack and create a connector instance. Because you
authenticate with Slack via OAuth 2.0, all you need to do is add a name for the instance. After
you create the instance, you'll log in to Slack to authorize SAP Cloud Platform Open Connectors
to access your account. For more information about authenticating a connector instance, see
Authenticate a Connector Instance (Ul).

After successfully authenticating, we give you several options for next steps. Make requests
using the APl docs associated with the instance, map the instance to a common resource, or
use it in a formula template.

Authenticate Through API

SAP Cloud Platform Open Connectors recommends visiting the Slack APl Documentation and
reviewing the information posted regarding the OAuth Scope and Permissions.

Step 1. Get Connectors OAuth Information

e HTTP Header: None

e HTTP Verb: GET

e Request URL:/elements/{keyOrld}/oauth/url
e Request Body: None

e Query Parameters:
e apiKey- the key obtained from registering your app with the provider

e apiSecret - the secret obtained from registering your app with the provider



e callbackUrl - the URL that you supplied to the provider when registering your app, state -
any custom value that you want passed to the callback handler listening at the provided
callback URL.

Description: The result of this APl invocation is an OAuth redirect URL from the endpoint. Your
application should now redirect to this URL, which in turn will present the OAuth authentication
and authorization page to the user. When the provided callback URL is executed, a code value
will be returned, which is required for the Create Instance API.

Example cURL Command:

_client id",

"element": "slack"

Handle Callback from the Endpoint: Upon successful authentication and authorization by the
user, the endpoint will redirect to the callback URL you provided when you setup your
application with the endpoint, in our example, https://www.mycoolapp.com/auth. The endpoint
will also provide two query string parameters: “state” and “code”. The value for the “state”
parameter will be the name of the endpoint, e.g., "slack" in our example, and the value for the
“code” parameter is the code required by SAP Cloud Platform Open Connectors to retrieve the
OAuth access and refresh tokens from the endpoint. If the user denies authentication and/or
authorization, there will be a query string parameter called “error” instead of the “code”
parameter. In this case, your application can handle the error gracefully.



Step 2. Create an Instance
To provision your Slack connector, use the /instances API.

Below is an example of the provisioning API call.

HTTP Headers: Authorization- User, Organization
HTTP Verb: POST

Request URL: /instances

Request Body: Required - see below

e Query Parameters: none

Description: connector token is returned upon successful execution of this API. This token
needs to be retained by the application for all subsequent requests involving this connector
instance.

A sample request illustrating the /instances APl is shown below.

HTTP Headers:

Authorization: User , Organization

This instance.json file must be included with your instance request. Please fill your information
to provision. The “key” into SAP Cloud Platform Open Connectors Slack is "slack". This will need
to be entered in the “key” field below depending on which connector you wish to instantiate.



"element": {
"key": "slack"

b

"providerData": ({

"code":

b
"configuration": {

wn

"oauth.api.key":
"oauth.api.secret": "",

"oauth.callback.url": "",

"oauth.scope": "users:write, users:read, users:read.email, users.profil
e:read, users.profile:write, chat:write:user, search:read, files:read, file
s:write:user, channels:read, channels:write, channels:history, groups:read,
groups:write, groups:history"

b
"tags": [

nwn

Here is an example cURL command to create an instance using /instances API.

Example Request:

curl -X POST

-H '"Authorization: User , Organization '

-H 'Content-Type: application/json'

-d @instance.json
'https://api.openconnectors.us2.ext.hana.ondemand.com/elements/api-v2/insta

nces'

If the user does not specify a required config entry, an error will result notifying her of which

entries she is missing.

Below is a successful JSON response:

"id": 123,
"name": "Test",
"token": "5MOr3Sl1/EdkwwomTimjBYV/hAUAzzlg=",
"element": {
"id": 2103,

"name": "Slack",




"description": "Slack brings all your communication together in one pla
It's real-time messaging, archiving and search for modern teams.",
"image": "https://a.slack-edge.com/0180/img/icons/app-256.png",
"active": true,

"deleted": false,

"typeOauth": false,

"trialAccount": false,

"resources": [],

"transformationsEnabled": true,

"bulkDownloadEnabled": false,

"bulkUploadEnabled": false,

"cloneable": true,

"authentication": {

"type": "oauth2"

}y

"hub": "collaboration",

"protocolType": "http",

"private": false

}y

"provisionInteractions": [],
"valid": true,

"disabled": false,
"maxCacheSize": O,
"cacheTimeToLive": 0,
"configuration": {

"base.url": "https://slack.com/api",

"oauth.api.secret": "CLIENT SECRET",

"event.notification.subscription.id": null,

"oauth.token.url": "https://slack.com/api/ocauth.access",

"pagination.max": "100",

"event.vendor.type": "webhooks",

"oauth.scope": "users:write, users:read, users:read.email, users.profil
e:read, users.profile:write, chat:write:user, search:read, files:read, file
s:write:user, channels:read, channels:write, channels:history, groups:read,
groups:write, groups:history",

"oauth.user.token": "xoxp-99845548065-3df640f4b74a86416895b3f%af4d42bc2b"

"oauth.authorization.url": "https://slack.com/ocauth/authorize",
"event.notification.instance.finder": "",

"pagination.type": "page",

"event.notification.callback.url": "false",

"oauth.callback.url": "https://www.mycoolapp.com/auth",

"scope": "users:write, users:read, users:read.email, users.profile:read
users.profile:write, chat:write:user, search:read, files:read, files:writ
:user, channels:read, channels:write, channels:history, groups:read, group
:write, groups:history",

"oauth.user.refresh token": null,

"oauth.token.revoke url": "https://slack.com/api/auth.revoke",

"oauth.user.refresh interval": "3600",




ocauth.api.key": "CLIENT ID",
null,

niw
4

"false"

"none"

Note: Make sure you have straight quotes in your JSON files and cURL commands. Please use
plain text formatting in your code. Make sure you do not have spaces after the in the cURL
command.

Note: Make sure you have straight quotes in your JSON files and cURL commands. Please use
plain text formatting in your code. Make sure you do not have spaces after the in the cURL
command.

Instance Configuration

The contentinthe configuration sectionor nested objectinthe body posted tothe
POST /instances Or PUT /instances/{id} APIs varies depending on which connector

is being instantiated. However, some configuration properties are common to all connectors
and available to be configured for all connectors. These properties are -

® cvent.notification.enabled :Thispropertyisa boolean property,and
determines if event reception (via webhook or polling )isenabled forthe
connector instance. This property defaults to 7alse.

e cvent.vendor.type :When event.notification.enabled propertyissetto
true, this property determines the mechanism to use to receive or fetch changed events
from the service endpoint. The supported values are webhook and polling .Most
connectors support one mechanism or the other, but some like Salesforce.com support
both mechanisms. This property is optional.

e cvent.notification.type :Thisproperty canbe usedtodetermine how anevent
notification should be sent to the consumer of the connector instance, in most cases
your application. Currently, webhook isthe only supported value for this property. This

means that when an event is received by the connector instance, it will get forwarded to



the provided event.notification.callback.url viaa webhook toyou.This
property is optional.

event.notification.callback.url :As mentioned above, the value of this
propertyisan http or https URL to which we will post the event for consumption
by your application. This property is optional.

filter.response.nulls :Thisproperty defaultsto frueg i.e.,it's boolean property,
and determinesif null valuesintheresponse JsonN should or should not be filtered
from the response returned to the consuming application. By default, all null values
are filtered from the response before sending the response to the consuming
application.



