
Microsoft SQL Server
Authenticate a Connector
Last Modified on 09/18/2020 10:33 am EDT

You can authenticate with Microsoft SQL Server to create your own instance of the Microsoft SQL Server connector

through the UI or through APIs. Once authenticated, you can use the connector instance to access the different

functionality offered by the Microsoft SQL Server platform.

Create Instance Directly via IP Address and Port Number

The following is required to create a Microsoft SQL Server connector instance:

Database Host: e.g. 123.123.1.123:3306
Database Name

Database Username

Database Password

Database Schema (default is dbo)

Database Tables (OPTIONAL:OPTIONAL: Can connect a set of tables i.e. contacts, accounts or prefixed tables, i.e. data_* via

comma separated list)

Step 1. Create an Instance

To provision your Microsoft SQL Server connector, use the /instances API.

Below is an example of the provisioning API call.

HTTP HeadersHTTP Headers: Authorization- User , Organization

HTTP VerbHTTP Verb: POST

Request URLRequest URL: /instances

Request BodyRequest Body: Required – see below

Query ParametersQuery Parameters: none

Description: token is returned upon successful execution of this API. This token needs to be retained by the application for

all subsequent requests involving this connector instance.

A sample request illustrating the /instances API is shown below.

HTTP Headers:

Authorization: User , Organization

This instance.json file must be included with your instance request. Please fill your information to provision. The “key” into

SAP Cloud Platform Open Connectors Microsoft SQL Server is "sqlserver". This will need to be entered in the “key” field

below depending on which connector you wish to instantiate.

CONNECTING DIRECTLY VIA IP ADDRESS AND PORT NUMBERCONNECTING DIRECTLY VIA IP ADDRESS AND PORT NUMBER

{
 "element": {
 "key": "sqlserver"
 },
 "configuration" : {
 "db.host": "",
 "db.name": "",
 "username": "",
 "password": "",
 "db.schema": "",
 "db.table.names": ""
 },
 "tags": [
 ""
],
 "name": ""
}

Here is an example cURL command to create an instance using /instances API.

Example Request:

curl -X POST
-H 'Authorization: User , Organization '
-H 'Content-Type: application/json'
-d @instance.json
'https://api.openconnectors.us2.ext.hana.ondemand.com/elements/api-v2/instances'

If the user does not specify a required config entry, an error will result notifying her of which entries she is missing.

Below is a successful JSON response:

{
 "id": 1234,
 "name": "Test",
 "token": "VAnlQ/V28PT+M62kdajlsd90eHHtUJai+Efq8=",
 "id": 479,
 "name": "SQLServer",
 "key": "sqlserver",
 "description": "Add a SQLServer connector to connect your existing SQLServer database, allo
wing you to manage data for your database tables. You will need your SQLServer database informati
on to add an instance.",
 "image": "elements/provider_mysql.png",
 "active": true,
 "deleted": false,
 "typeOauth": false,
 "trialAccount": false,
 "transformationsEnabled": true,
 "bulkDownloadEnabled": false,
 "bulkUploadEnabled": false,
 "cloneable": false,
 "authentication": {
 "type": "custom"
 },
 "hub": "db"
 },
 {
 "valid": true,
 "maxCacheSize": 0,
 "cacheTimeToLive": 0,
 "configuration": {},
 "eventsEnabled": false,
 "traceLoggingEnabled": false,
 "cachingEnabled": false
 }

Note: Make sure you have straight quotes in your JSON files and cURL commands. Please use plain text formatting in your

code. Make sure you do not have spaces after the in the cURL command.

Instance Configuration

The content in the configuration section or nested object in the body posted to the POST /instances or

PUT /instances/{id} APIs varies depending on which connector is being instantiated. However, some configuration

properties are common to all connectors and available to be configured for all connectors. These properties are -

event.notification.enabled : This property is a boolean property, and determines if event reception (via

webhook or polling) is enabled for the connector instance. This property defaults to false.

event.vendor.type : When event.notification.enabled property is set to true, this property determines

the mechanism to use to receive or fetch changed events from the service endpoint. The supported values are

webhook and polling . Most connectors support one mechanism or the other, but some like Salesforce.com

support both mechanisms. This property is optional.

event.notification.type : This property can be used to determine how an event notification should be sent to

the consumer of the connector instance, in most cases your application. Currently, webhook is the only supported

value for this property. This means that when an event is received by the connector instance, it will get forwarded to

the provided event.notification.callback.url via a webhook to you. This property is optional.

event.notification.callback.url : As mentioned above, the value of this property is an http or https
URL to which we will post the event for consumption by your application. This property is optional.

filter.response.nulls : This property defaults to true, i.e., it's boolean property, and determines if null
values in the response JSON should or should not be filtered from the response returned to the consuming

application. By default, all null values are filtered from the response before sending the response to the

consuming application.

